
International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

202

Software defined network approach for layer II based distributed firewall

Ahmed Mahmud1, Kabiru Ibrahim Musa2, Usman M. Joda3

1ICT Unit, Bauchi State University, Gadau.

2Department of Management and Information Technology, Faculty of Management Sciences,

Abubakar Tafawa Balewa University, Bauchi.

3Department of Mathematical Sciences, Faculty of Sciences,

Bauchi State University, Gadau

Email: mahmud.ahmed@basug.edu.ng

Abstract

Controlling and managing networks has become a highly complex and specialized activity.

Network operators are struggling to cope with integration of different types of networks,

while meeting the challenges of increasing traffic. The traditional network tends to be rigid.

Once the forwarding policy has been defined, the only way to change it is by changing the

configuration of all the affected devices. In this context Software Defined Networking (SDN)

is being looked upon as a promising paradigm that has the power to change the way

networking is done. By centralizing control, and making forwarding nodes simple, SDN

offers flexible control over the traffic flows and the policies networks use to manage these

flows. Along with the excitement, there have been apprehensions regarding SDN. The

perceived risks associated with SDN have prevented faster adoption so far. Spurious traffic

flows can affect switches and controllers alike. An attacker, with malicious intent, can build

up the infructuous flows to such an extent as to seriously overload the switches and the

controller thus, led to a Denial of Service (DoS) attack. In this paper we propose a Layer II

firewall for preventing such intrusions using SDN traffic flow intrusions. The Layer II

firewall would not only detect the intrusions but also provide some degree of protection to the

network devices the moment an attack is detected. Furthermore, it will completely prevent

undesired traffic from transmitting data on the network. Thereby making the network more

robust and reliable. The proposed technique uses an algorithm that control traffic variation

of flow table entries and subject them to a set of rules based on source and destination MAC

address in the flow header. The experimental result using Mininet virtualized network

environment has shown that our proposed technique has improved performance against

results obtained using an IP based firewall in terms of bandwidth, round trip time (RTT) and

latency variation while preventing attack on the overall networks traffic.

 Keywords: Software Defined Networking, Firewall, Bandwidth, Round Trip Time.

1. Introduction

Networks of the twenty first century offer

immense flexibility to the business and

individual users, but at the cost of higher

complexity. Management and control of

these type networks have become very

complex and difficult activities that require

specialisation. In this regard SDN is being

considered as a promising approach that

has the potential of changing the

networking world (Nadeau & Gray, 2013).

SDN is a new networking paradigm that is

introduced with the sole aim of

simplifying the network management by

separating the data and control planes.

SDN has opened up the possibilities of

mailto:mahmud.ahmed@basug.edu.ng

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

203

programmability in the network control

plane (Azodolmolky, 2013). The

separation of the control logic from

networking devices, such as switches and

routers, in traditional networks to a

centralized unit known as the controller

permits the physical network hardware to

be detached from the control Plane. SDN

architecture will provide a set of

Application Programing Interfaces (APIs)

that simplifies the implementation of some

of the network services (for example,

routing, multicast, security, access control,

bandwidth management, traffic

engineering, Quality of Service, energy

efficiency, and various forms of policy

management (Pujolle, 2015).

It is evident that not every small change

needs to come at the cost of reconfiguring

all the network devices (Nadeau & Gray,

2013). The data plane consists of devices

that contain tables of flow entries. The

network hardware uses the secured

transport layer protocol to securely

communicate with the controller about

new entries that have not been populated

in the flow table. Each flow entry includes

matching rules and actions that guide the

data plane on the action to take for the

matched flow. When a packet arrives at a

switch the header fields will be matched

against the matching rules available in the

flow table and if a match is found the

action specified by the flow entry will be

taken by the switch otherwise the packet

header will be forwarded to the controller

for further process. The controller then

processes the header and constructs a flow

rule to be installed in the flow tables of the

switches along the chosen path

(Azodolmolky, 2013). According to

Khondoker (2018) Layer II switch is a

type of network switch or device that

works on the data link layer (OSI Layer 2)

and utilizes MAC Address to determine

the path through where the frames are to

be forwarded. It uses hardware-based

switching techniques to connect and

transmit data in a local area network

(LAN).

The centralized structure of the controller

could lead to many undesirable security

challenges. One of such critical challenges

is the impact of traffic flow intrusion on

the SDN networks. These can affect

switches and controllers alike. An attacker,

with malicious intentions, can generate

infructuous flows to such an extent as to

seriously overload the switches and the

controller and create a denial of service

(DoS) attack (ref). At the arrival of each of

the attack packets a new flow rule needs to

be created and therefore the switch will

need to store the packets in its memory

and forward the header field to the

controller. However, receiving a large

number of attack packets will use up a lot

of switch memory and eventually install

many new flow entries in the flow tables.

Thus, causing the depletion of memory

and slow down the flow table lookup very

quickly, and in the worst-case scenario, it

may bring down the switch. Meanwhile all

these packets from all over the network

will be forwarded to the controller for

processing. The large volume of packets

sent to the controller with each of them

consuming part of the memory and the

processing power of the controller may

also eventually break down the controller

(Azodolmolky, 2013). Existing techniques

did not fully address the issue of flow

attacks in relation to firewall traffic control

in distributed network system thus, the

need for more solution that can be deploy

in solving the problem. Traffic control

algorithms have been introduced under

different traffic pattern to monitor the

network loads and to identify the exact

attack paths and prevention techniques.

The remaining part of this article is

organized as follow: Section 2 contains the

review of existing literatures. Section 3

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

204

presents the need for trafic flow prevention

technique. Section 4 provides the

technique and its simulation modelling.

Section 5 presents theperformance

evaluationand experimental results

analysis. Finally, Section 6 concludes the

research findings.

2. Related works

Exhaustive researches have been carried

out for firewall traffic control using SDN.

Waheed and Mufarrej (2017) proposed and

implemented an SDN firewall for Network

virtual function. The technique

implemented by the researchers involved a

single firewall and multiple firewalls to

test and evaluate performance. User

Datagram Protocol (UDP) traffic was used

to test and evaluate the performance of the

proposed firewall. However, the authors

used IP address headers of the packet for

the source and destination switches to

deliver flows. This is susceptible to IP

address spoofing and may lead to

undesirable vulnerabilities in the network.

Othman and Ammar (2017) implemented a

POX controller based SDN firewall and

analysed performance of the firewall. The

research proposed a methodology for the

implementation of the firewall based on

the packets headers and matches them

against a predefined rule in the firewall

policies. They used IP address headers of

the packets to match rules on the firewall

policies. This technique has been

inefficient due to security vulnerabilities

associated with IP address matching such

as IP address spoofing which could lead to

denial of service and subsequently total

network breach.

Morzhov and Nikitinskiy (2018)

conducted a research to determine various

ways to resolve anomalies in an SDN

firewall. They analysed a network

application designed for SDN controller.

The network application was developed by

the researchers and called it PreFirewall.

However, the proposed technique did not

take into consideration rules set of rules

that are presented in managing ports with

their respective IP addresses. This makes it

difficult if not impossible to implement a

rule set based firewall for the SDN.

 Also, Kumar and Lung, 2017

implemented a MAC address technique to

filter openflow traffic. In the results

obtained, the researchers were able to

show that MAC based approach

outperforms IP based approach. However,

the researchers were not able to test the

performance of the firewall with TCP and

UDP traffic. This greatly affects the for

network administrators to determine the

usability of the scheme.

Krongbaramee and Somchit (2018)

conducted a research by implementing a

stateful firewall application using open

Vswitch. The results obtained indicates

that the firewall works effectively by block

unwanted openflow traffic but with some

overhead load on the swithes. The

limitation of this study is that the

researchers did not test the scheme with

multiple topologies to determine

scalability and protection against

SYNFLOOD attacks.

Uddin and Monir (2019) conducted a

research to analyse the performance of two

SDN Firewalls- POX and ODL. Results

from the experiment show that the two

firewalls performed the task of allowing

traffic or denying it based on the rules

installed in the application. The results

however show evidence of data loss at

time intervals. Also, the results indicate a

very low transmission rate.

 Ali, Imam & Kaysi (2016) proposed

security architecture for the SDN networks

by investigating the control plane with the

possibility of inserting a proposed security

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

205

plane between the data and control plane.

The proposed technique aims for an early

and fast detection of an attack before the

controller or host is completely swamped

with a large number of malicious packets.

More so, the proposed technique aims for

an early and fast detection of an attack

before the controller or host is completely

swamped with a large number of malicious

packets. The architecture has been

implemented for both clients and server on

a virtual network. The sever network

security policies were implemented using

pyretic programming language and the

client policies were implemented using

pox- which offers rich python APIs for

network programming. However, despite

the successes achieved, the technique

failed to include the implementation and

testing of the policy insertion, sending

commands to the controller in real time to

trigger (open virtual switch database)

OVSDB in order to insert new policies

onto the flow table.

Similarly, a study by Seungwon, Lei,

Sungmin, and Guofei (2016)

systematically investigated the

opportunities and challenges on how SDN

can benefit network security. To this end,

they reviewed the new features provided

by SDN, then study how these features can

enhance on specific security functions.

They opined that controlling network

flows dynamically provides many new

possibilities in network security functions.

Second, they argued that SDN enables

users to separate malicious (or suspicious)

network flows from benign ones

dynamically. This ability is quite useful

when it is to differentiate security services.

Also, they illustrated that if we apply

SDN, we can simply build this function by

controlling network flows dynamically.

Further, the study investigated network

programmability of SDN. In this regard,

the study stated that network

programmability feature of SDN offer the

possibility of programming network

security functions easily. This

Programming network security

applications, according to the study is very

useful and cost effective, because there

will not need to buy additional hardware

boxes or software programs to deploy

network security services, but create and

deploy network security applications

running on a controller. The study

however, did not implement any of the

techniques in the development

environment neither in real scenario.

Yang, YuNan, & Wei (2014) analysed

security threats to SDN networks and

came up with an improved framework for

an SDN network they called network

intrusion detection system (NIDS). The

framework is based on the following rules

which are part of the IP address and port

number of the receiver.

alert tcp 192.12.1.32 :80 -> 192.168.1.12

111

The first item is the conduct of the rule. It

defines how the package should be

handled when the package matches the

rule. There are five default handling: alert,

log, pass, activate and dynamic.

The second item is the agreement. The

agreements that Snort can analyze are

TCP, UDP and Internet Control Message

Protocol (ICMP).

The third item is the IP address of the

sender. It can be some IP or a range of IP

address. It can be presented as

192.12.1.3:192.12.1.15.

The fourth item is the port number of the

sender. It is just like the IP. There are three

types of expression in the rule set. 12

means the port 12. :80 means the port

number can’t be greater than 80. Similar,

80: means the port number can’t be less

than 80. The last one is 80:100, it means

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

206

the port number must be between 80 and

100.

The fifth item is the direction operator.

One-way operation (->) represents the

flow direction of the data package. Two-

way operation (< >) represents that the

system should record and analyse the bi-

directional data transferred between the

two hosts.

The framework consisted of three

subsystems: capture and parsing, detection

and log and alarm subsystem. Experiments

were conducted and results were obtained.

However, the technique didn’t take into

consideration prevention techniques; rather

it detected intrusions after it has already

occurred. The system was implemented

using openflow and floodlight which are

not quite compatible. Also, IP addresses

are used which can be unreliable if DHCP

(Dynamic Host Configuration Protocol) is

enabled in the network. Another study by

Sezer, S., Scott-Hayward S., & Pushpinder

K.C., (2013) analysed issues in security

policy implementation in SDN networks.

The study identified three (3) approaches

to SDN security policy implementation as

follows:

Network forensics: Facilitate quick and

straightforward, adaptive threat

identification and management through a

cycle of harvesting intelligence from the

network, analysing it, updating policy, and

then reprogramming to optimize from

network experience.

Security policy alteration: Allow you to

define a security policy and have it pushed

out to all the infrastructure elements,

reducing the frequency of

misconfiguration and conflicting policies

across the infrastructure.

Security service insertion: Facilitate

security service insertion where

applications like firewalls and intrusion

detection systems (IDSs) can be applied to

specified traffic according to the

organization’s policies. However, despite a

detailed analysis of implementation issues

including security considerations the

technique does not scale for validation on

various traffic attack issues and solutions.

Shirali-Shahreza and Ganjali (2013)

Proposed FleXam which is a flexible

sampling extension for OpenFlow

designed to provide access to packet level

information at the controller. The

technique explored three information

channels foe OpenFlow specification

which are:

Event-based Messages: Event-based

messages are sent by the switches at events

such as state change of a link or port, and

usually deliver information about changes

in network structure and topology;

Flow Statistics: Flow statistics (received

packets, received bytes and duration in the

current specification) are collected by the

switches and pulled by the controller. This

is the only way for the controller to collect

information about active flows and

Packet-in Messages: A switch may send a

packet-in message either because it did not

know what to do with the packet – no

matching entry found in the flow table – or

as a result of a send-to-controller action in

the matching flow entry. The switch may

buffers the original packet and only

includes part of the packet – usually the

first 128 bytes – in the packet-in message.

The proposed FleXam allows developers

to implement security applications that

need packet level data with low overhead.

As a result, the application could be run

directly on the controller for small

networks, eliminating the need for

additional monitoring machines. More

complex applications for larger networks

can be implemented with the help of

distributed monitors, at a fraction of the

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

207

overhead of existing solutions, where all

flow has to be directed to a monitor.

However despite the detailed analysis of

the framework, it failed to provide

implementation details and experimental

results.

Teenu and Jincy (2015) conducted a

survey on SDN security mechanisms. The

authors classified SDN security

vulnerabilities into 3 categories. Control

plane specific which includes attack cases

against SDN control and application layer.

Control channel specific traffic which

includes attacks targeting to the interface

(OpenFlow). Data plane specific traffic

which includes the attack on network

devices. The study further outlined

mechanisms for security issues in SDN

which include modular libraries provided

by the APIs to program security policies

for the SDN network. Another mechanism

proposed by the study is the use of data

link layer protocol. This involves applying

Institute of Electrical and Electronics

Engineers (IEEE) 802.1X standard and

Extensible Authentication Protocol (EAP).

A virtual router sends an authentication

request, standardized by IEEE 802.1X

(ref), and POX controller redirects it to the

Authenticator (ref). The Authenticator

checks the credentials of the Supplicant

against a server, running the authentication

method defined in EAP. If credentials are

correct, the Authenticator sends a success

message for Supplicant host and sends an

authorization and confirmation message

for POX via a SSL secure channel. The

study gave an insight into existing

mechanisms for handling SDN security

issues. However, the study did provide

guideline on how the technique was

implemented which is very important in

deploying security solutions for SDN

networks.

Also, Govindarajan, Meng, & Ong (2013)

involves a comprehensive literature review

on SDN research topics, the challenges

and solutions. The study identified biggest

security challenge is to protect the

controller which has more intelligence for

controlling the data planes. The other

securities challenges identified by the

study reside in the SDN based networking

environment are protecting Distributed

Denial of Service (DDoS) attacks and

intrusion prevention. The study proposed

that monitoring component is employed

with active query and passive listening

mechanism to aggregate the network

information. It intercepts the control

messages to acquire the global view of the

network information. If the packet

received by the switch does not match with

flow table entries it sends a message to the

controller, it replies to the switch for

installing forwarding rule using Flow

message. The switches send the Flow

remove message to the controller, once the

flow time is expired. Moreover, it uses the

OpenFlow Read State message to know

the network resource utilization. The study

provided insight into mechanism for

implementing security policy for an SDN

network but failed to provide

implementation details for such

mechanisms which is important for

deploying security solutions for an SDN

network.

The work of Yunchun and Jutao (2015)

proposed a method based on SDN network

architecture for internet protocol security

(IPSec) automatic configuration

management to solve SDN security

problems. The mechanism is based on

Access authentication module is used to

certify whether OpenFlow switch (IPSec

Virtual Private Network VPN client

application device) is SDN controller

certified device, and whether it is IPSec

VPN client application device certified by

IPSec VPN. And it coordinates with a

certification server to certify client

applications. The module monitor IPSec

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

208

tunnel information, running state, the

topology and performance indicators that

are established by Open Flow switch

(IPSec VPN client application). And the

module can control IPSec tunnel

connection and close. IPSec tunnel

information includes the total number of

IPSec tunnels, the number of remote

access users, tunnel consultation mode,

encryption mode, etc. Performance

indicators include the number of messages

received and sent by IPSec tunnel,

flow/rate, and receiving/sending packets.

If there is any IPSec tunnel abnormal

connection, it alarms and shuts down the

tunnel. Though the research proposed an

impeccable security, it failed to provide

data for performance evaluation and

details of implementation which is

paramount for deploying SDN security

solutions.

Similarly, Jin and Nicol (2015) proposed a

parallel simulation engine for an SDN

network based on:

Entity: This is the base class that

represents a simulation entity. Simulation

experiments can actually be viewed as

interactions among a number of entity

objects. An entity object is a container of

simulation state variables and instances of

other simulation objects, such as

OutChannels and InChannels.

InChannel: represents the endpoint of a

directed communication link between

entities and

Message: is the base class that represents

events sent between entities through the

communication channels.

They developed a large-scale network

simulation/emulation testbed. The system

architecture was extended for network

testbed to support OpenFlow-based SDN

simulation experiments. The study

proposed an algorithm for global

simulation/emulation. The study gave a

concise mechanism for

simulation/emulation of SDN network

environment. However, it did not take

security issues into consideration which

cannot be ignored in deploying SDN

applications.

The inefficiency of the existing techniques

in solving the challenge of network trafic

attack had called for an ideal solutions that

is promissing.

3. The Need for Layer II Firewall

From the related literature, this paper has

deduced that that there is an existing

security threat for SDN networks. This is

because, as stated in the work of

Seungwon et al. (2016) and Ali et al.

(2016), it is possible to programme SDN

network policies. This clearly gives hope

for the possibility of programming security

policies for SDN though no

implementation details or test scenarios

were conducted by the researchers. The

study by Yang et al. (2014) analysed the

security threat of SDN and proposed a

based on subjecting every traffic to a set of

rules based on matching pairs of IP

addresses of the sending and receiving

nodes on the network topology. This is

highly inefficient if DHCP is enabled in

the network. The work of Teenu and Jincy

(2015) categorized security vulnerabilities

into: control plane specific, control

channel specific and data plane specific.

The study further outlined mechanisms for

security issues in SDN which include

modular libraries provided by the APIs to

program security policies for the SDN

network using python scripts. The study by

Gupta (2013) profiled security threats in

SDN networks to include but not limited

to: spurious traffic flows; attacks on

vulnerabilities that exist in the switches;

attacks on control plane communications.

Therfore, the layer II firewall algorithm is

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

209

design in order prevent spurious traffic

flows in an SDN network.

4. Design of Layer II Firewall

The simulation and testing of the proposed

method for spurious traffic flow

prevention is explained through the

following sections. The algorithm is

implemented on the python based pox

controller in the Mininet virtualized

network environment (ref). The process is

describe in the follows steps:

In the first step, the overall algorithm

behaviour in traffic flows attacks under

different legitimate UDP, ICMP and TCP

traffic patterns were oberved. Two traffic

patterns are tested for the legitimate traffic

running in the network and the algorithm

behaviour is observed under different

traffic loads for the stated testbeds.

Finally, more detailed analysis has been

performed on the effectiveness of the

algorithm in identifying the exact attack

paths and prevention techniques. However,

this may lead to inefficient MAC adress

rules on trafic flow over the network.

Therefore, we introduce another

subroutine stargy that can create a hash

table for storing keys, values, and source

MAC adresses. The general procedure of

the proposed algorithms can be

summarized in various steps as shown in

Table 1 while the overall operational

flowchart is shown in Figure 1.

Figure 1: FlowChat of the Firewall application

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

210

Table 1: Algorithm of the Firewall application

Steps Description

Traffic Flow Input: (i) Use source address and switch port to update

address/port table

 (ii) Check source MAC address against traffic flow

rules

Process: (i) Is transparent = False and either Ethertype is LLDP

(Link Layer Discovery Protocol) or the packets

destination address is a Bridged Filtered address? If so

Drop

 (ii) Is destination multicast? If so FLOOD

 (iii) Is output port the same as input port? If yes DROP

Output: (i) Install flow table entry in the switch so that this

flow goes out the appropriate port. Send the packet out

appropriate port

Traffic Pattern Input: (i) Create a hash table for storing (keys, values) pairs

 (ii)Table maps (Switch, Source MAC address) to true or

false

Process: (i) Create a hash table for storing (keys, values) pairs

 (ii)Table maps (Switch, Source MAC address) to true

or false

Output: (i) Controller will decide to forward traffic if:

 (ii) There is a flow entry that maps to true

5. Performance Evaluation

To evaluate the performance of our

proposed firewall algorithm, extensive

simulations experiments have been carried

out in Mininet (2016) is a tool used to

simulate the SDN, allowing a simple and

quick approach to create, interact and

customize prototypes for SDN. The

general description of the simulation setup

is presented in Table 2. The performance

comparison of our technique is estimated

in terms of Round-Trip Time (RTT),

Bandwidth and Latency Variation. The

experiments are performed by varying

number of packets dropped in order to

evaluate the efficiency and as well the

effectiveness of our proposed algorithm.

First, we will set up our topology and test

the connectivity between nodes in the

simulated network environment. POX is

used as the controller to test this topology.

After running the network topology, the

controller should start to communicate

with the network nodes to enable the

required technology and set proper flows

of traffic up for the evaluation. SDN

utilities such Ping and Iperf has been used

to measure response time throughput,

latency for both TCP and UDP traffic. In

the following section the experimental

results of the proposed algorithm are

discuss and analysed. Simulation setup is

presented in Table 2. Ping utility will be

used to measure response time.

6. Results Analysis and Discussion

This section presents the experimental

results from the firewall experiment.

Figure 2 shows the successful creation of

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

211

the topology. Seven switches and eight

hosts were connected forming the desired

spanning topology (more discussion on the

spanning topology).

Figure 2: Creation of Mini net topology through CLI

Based on the firewall rules installed in our

flow table entries, we know that h2 can

ping h3. The figures below ICMP

messages in 15 sequences in three streams

and got responses. The RTT reduced

tremendously after the first two sequences.

We consider sending traffic to establish

connection between two hosts by installing

appropriate forwarding rules on the

switches and the openflow controller. This

involves exchange of openflow messages

between as well as the controller updating

flow table entries (Nadeau & Grey, 2013).

The first few sequences involve the

learning process, because at this stage,

there are no rules installed on the flow

table. This accounts for the initial delay in

the round-trip time from our experiment

depicted in figure 2. After the initial delay,

it can be seen that the RTT is almost the

same for both cases of with and without

the firewall (Wajdy & Hao, 2017). This

means that our firewall rules in the

application do not negatively affect the

network performance as shown in table 3

below unlike the results obtained in the

work of (Uddin & Monir, 2019) where

there was a remarkable loss in data and

response time.

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

212

Table 2: ICMP Traffic from h2 to h3 with and without the firewall application running

ICMP_SEQ RTT WITHOUT FIREWALL RTT WITH FIREWALL

1 2.820 41.133

2 4.036 0.130

3 2.928 0.124

4 0.244 0.124

5 0.141 0.117

6 0.126 0.123

7 0.117 0.122

8 0.120 0.125

9 0.126 0.122

10 0.141 0.127

11 0.124 0.128

12 0.128 0.120

13 0.129 0.123

14 0.131 0.126

15 0.087 0.115

Figure 3: ICMP Output with and without the firewall application running

To measure bandwidth, iperf utility has

been used. As we did earlier with TCP

test, we configured two as TCP hosts that

are known to communicate with each other

according to our firewall rules as server

and client respectively. Then we initiated

TCP traffic in three streams with the same

TCP window size. The bandwidth

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

213

measured for the experiment without our

firewall rules reaches a peak of 33.100 in

the 7th sequence. This is higher than the

bandwidth for all the sequences with

firewall rules installed. To be able to

measure TCP traffic is step further against

the work of (Kumar & Lung, 2017) where

TCP and UDP could not be initiated to test

the firewall application. Also, it is always

a trade-off between security and

performance (Nadeau and Grey, 2013).

Thus, our firewall performs less in terms

of bandwidth evaluation as shown in

Figure 3.

Table 3: TCP Traffic from h1 to h2 with and without the Firewall application running

Time Interval

(S)

Bandwidth without Firewall (GBps) Bandwidth with Firewall (GBps)

0.0 - 1.0 31.600 32.167

1.0 - 2.0 32.300 32.533

2.0 - 3.0 32.733 32.633

3.0 - 4.0 32.567 32.500

4.0 - 5.0 32.367 32.600

5.0 - 6.0 32.667 32.900

6.0 - 7.0 32.733 32.067

7.0 - 8.0 33.100 32.600

8.0 - 9.0 32.667 32.767

9.0 - 10.0 32.367 32.767

Figure 4: TCP Output with and without the Firewall Application running

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

214

Latency variation (jitter) delay according

to Khondoker (2018) is the amount of time

it takes it takes to transmit data from a

source to a destination and it varies over

time. To measure latency, we again

configured two nodes, h1 and h2 as UDP

client and server respectively. Three UDP

streams were initiated and measure the

latency with the same parameters. From

our experimental results shown in Figure 5

and Table 4, the network running our

firewall application takes a little less time

to respond than without the firewall rules

applied.

Table 4: UDP Traffic from h1 to h2 with and without the Firewall Application running

Time Interval (S) Latency without Firewall

(ms)

Latency with Firewall

(ms)

0.0 - 1.0 0.00467 0.00267

1.0 - 2.0 0.00167 0.00133

2.0 - 3.0 0.00200 0.00267

3.0 - 4.0 0.00167 0.00100

4.0 - 5.0 0.00467 0.00200

5.0 - 6.0 0.00133 0.00167

6.0 - 7.0 0.00467 0.00200

7.0 - 8.0 0.00100 0.00200

8.0 - 9.0 0.00200 0.00300

9.0 - 10.0 0.00300 0.00167

10.0 - 11.0 0.00500 0.00133

11.0 - 12.0 0.00167 0.00200

12.0 - 13.0 0.00167 0.00400

13.0 - 14.0 0.00133 0.00067

14.0 - 15.0 0.00167 0.00267

Figure 5: UDP Output with and without the Firewall Application running

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

215

7. Conclusion

This paper focuses on design and

development of a Layer II firewall

approach based on SDN technologies. A

new algorithm has been developed and

integrated into the technique that has been

proposed to protect the SDN switches and

controller from the destructive and

undesirable effects of spurious traffic

flows by adding a lightweight prevention

mechanism at the controller. In evaluating

the performance of our firewall

application, it was discovered that the

bandwidth measured for the experiment

without our firewall rules reaches a peak

of 33.100 in the 7th sequence. This is

higher than the bandwidth for all the

sequences with firewall rules installed.

Though the performance in terms of

bandwidth is lower when our Layer II

firewall is running, it is not a bad trade-off

considering the Layer II SDN firewall. The

new approach relies on the fast data plane

to process majority of the traffic. After

testing all cases, we were able to

demonstrate the ability of our firewall to

filter traffic based on MAC addresses of

hosts installed on our flow table entries.

Also, the latency measured without our

firewall application is significantly lower

than the latency measured without the

firewall application running. Therefore,

the proposed algorithm can effectively

replace expensive physical firewall layer II

firewalls.

Conflict of interest statement

The authors declare that there is no any

conflict of interests

References

Ali, H., Imam H, E., A, C., & Kaysi, A.

(2016). SDN Security Plane: An

Architecture for Resilient Security

Services. 2016 IEEE International

Conference on Cloud Engineering

Workshops, 54-59.

Azodolmolky, S. (2013). Software Defined

Networking with OpenFlow.

Mumbai: Pact Publishing.

Govindarajan, K., Meng, K. C., & Ong, H.

(2013). A Literature Review on

Software-Defined Networking

Topics, Challenges and Solutions.

IEEE 2013 Fifth International

Conference on Advanced

Computing (ICoAC), 293-299.

Gupta, L. (2013). SDN: Development,

Adoption and Research Trends. 3rd

Generation Partnership Project, 1-

10.

Hu, F. (2014). Network Innovation

through OpenFlow and SDN:

Principles and Design. Boca

Raton: CRC Press.

Jin, D., & Nicol, D. M. (2015). Parallel

Simulation and Virtual-Machine-

Based Emulation of Software-

Defined Networks. ACM

Transactions on Modeling and

Computer Simulation, 26 (1), 1-

8.27.

Keti, F., & Askar, S. (2015). Emulation of

Software Defined Networks Using

Mininet in Different Simulation

Environments. IEEE Computer

Society, 4, 205-210.

Khondoker, R. (2018). SDN and NFV:

Security Analysis of Software-

Defined. Darmstad: Springer.

Krongbaramee, P., & Somchit, Y. (2018).

Implementation of SDN Stateful

Firewall on Data Plane using Open

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

216

vSwitch. 2018 15th International

Joint Conference on Computer

Science and Software Engineering

(JCSSE). IEEE.

Kumar, A., & Srinath, N. K. (2016).

Implementing A Firewall

Functionality For Mesh Networks

Using SDN Controller. IEEE, 168-

173.

Kumar, P. R., & Lung, C.-H. (2017).

Investigation of Security and QoS

on SDN Firewall Using MAC

Filtering. 2017 International

Conference on Computer

Communication and Informatics

(ICCCI -2017). Coimbatore,

INDIA: IEEE.

Martin, J., Rye, E., & Beverly, R. (2016).

Decomposition of MAC Address

Structure for Granular Device

Inference. ACM, 78-88.

Mininet. (2016, November 20). Retrieved

from Mininet: http://mininet.org/

Morzhov, & Nikitinskiy. (2018).

Development and Research of the

PreFirewall Network Application

for Floodlight SDN Controller.

IEEE Moscow Workshop on

Electronic and Networking

Technologies (MWENT).

Nadeau, T. D., & Grey, K. (2013). SDN:

Software Defined Networks.

Cambridge: O'reily.

Nadeau, T., & Gray, K. (2013). SDN:

Software Define Networks.

Sebastipol, CA: O'Reily.

Open Network Foundation. (2016,

September 13). Retrieved from

Open Network Foundation website:

www.opennetworking.org

Othman, & Ammar. (2017).

Implementation and Performance

Analysis of SDN Firewall on POX

Controller. 2017 9th IEEE

International Conference on

Communication Software and

Networks, 1461-1466.

Pena, J. G., & Yu, W. E. (2014).

Development of a Distributed

Firewall Using Software Deefined

Networking Technology. IEEE ,

449-452.

Pox, R. (2016, September 13). Retrieved

from Pox Repositories:

www.github.com/noxrepo/pox

Prete, L. R., Schweitzer, C. M., Shinoda,

A. A., & Oliveira, R. L. (2014).

Simulation in an SDN network

scenario using the POX Controller.

IEEE, 978-1-4799-4340-1.

Pujolle, G. (2015). Software Networks:

Virtualization, SDN, 5G and

Security. London: John Wiley &

Sons Inc.

Seungwon, S., Lei, X., Sungmin, H., &

Guofei, G. (2016). Enhancing

Network Security through Software

Defined Networking (SDN). IEEE

Journal, 978-1-5090-2279-3/16.

Sezer, S., Scott-Hayward, S., &

Pushpinder Kaur Chouhan. (2013).

Are We Ready for SDN?

Implementation Challenges for

Software-Defined Network. IEEE

Communications Magazine, 36-43.

International Journal of Intellectual Discourse (IJID)

ISSN: 2636-4832 Volume 4, Issue 3. September, 2021

217

Shirali-Shahreza, S., & Ganjali, Y. (2013).

Efficient Implementation of

Security Applications in OpenFlow

Controller with FleXam. IEEE

Computer Society, 49-54.

Switch, B. (2017, January 1). Secure and

Resilient SDN with Big Cloud

Fabric. Retrieved from Big Switch

networks:

http://go.bigswitch.com/rs/974-

WXR-561/images/BCF-White-

Paper-

Secure%20and%20Resilient%20S

DN-

2.pdf?_ga=1.112867725.86193620.

1448934819

Teenu, J., & Jincy, K. (2015). Survey on

SDN Security Mechanisms.

International Journal of Computer

Applications 9(3), 32-35.

Uddin, R., & Monir, M. F. (2019).

Performance Analysis of SDN

Firewalls: Pox vs ODL. 5th

International Conferences on

Advances in Electrical Engineering

(ICAEE). Dhaka, Bangladesh:

IEEE.

Virtual Machines. (2016, November 20).

Retrieved from VirtualBox:

https://www.virtualbox.org/wiki/Vi

rtualization

Waheed, & Mufarrej, A. (2017).

Implementation of Virtual Firewall

Function in SDN. 9th IEEE-GCC

Conference and Exhibition

(GCCCE).

Wajdy, O. M., & Hao, C. (2017).

Implementation and Performance

Analysis of SDN Firewall on POX

Controller. 9th IEEE International

Conference on Communication

Software and Networks, 1461-

1466.

White, R., & Tantsura, J. (2015).

Navigating Network Complexity:

Next Generation Routing with

SDN, Service Virtualization and

Service Chaining. Indianapolis:

Addison Wesley.

Yang, Y., YuNan, W., & Wei, Y. (2014).

Security Framework based on

SDN. Advanced Materials

Research 95, 4690-4693.

Yunchun, L., & Jutao, M. (2015). SDN-

based Access Authentication and

Automatic COnfiguration for

IPSec. IEEE 2015 4th International

Conference on Computer Science

and Network Technology (ICCSNT

2015), 996-999.

