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Abstract 

Control charts are statistically and visually designed to detect changes or shifts in process. We 

apply the combined two nonparametric Rank Test of Wilcoxon-Mann-Whitney and Mood 

statistics called Lapage-type Change-Point (LCP) Chart. The modified chart shows great 

efficiency in detecting signals and shift in children’sbronchial pneumonia, at about two years old 

(24th months), while it suggests that the actual shift had started at the 21st month (observation). 

This is an indication of the LCP promptness in raising alarm of a process shift if indeed it exists. 

The signal may have resulted due to shift in both mean (p=0.002949) and variability 

(p=0.03978) of children’s bronchial pneumonia as measured. The study suggests that the new 

method should be used in short-run situations since it has the capacity of not only detecting shift 

but also the period it occurs and also where the underlying distributions are usually unknown. 

Keywords: Wilcoxon-Mann-Whitney, Lapage-type Rank Test, Change-Point, Bronchial               

Pneumonia, force alarm 

1.0 Introduction  

Quality control procedures are instituted to 

identify the areas and degree of 

imperfection, and thus assist in the 

interpretation of data, and may indicate the 

need for procedural changes (Chatterjee and 

Qiu, 2009). On the other hand, Statistical 

Process Control (SPC) is involved with 

continuous monitoring and or inspection of a 

process to ensure that the process mean or 

variance has not changed at any point in 

time (McCracken & Chakaraboti, 2012). 

Statistical Process Control (SPC) is about 

continuous monitoring or surveillance of a 

process to ensure that neither the mean nor 

the variability of the process distribution has 

changed (Hawkins and Zamba, 2005b) and 

(McCracken and Chakraborti, 2013). 

Process control includes: Monitoring of 

some quality characteristics of the 

manufactured items to ensure compliance to 

certain standards; on-going surveillance of 

health data to detect an outbreak of a disease 

or increased rate of disease; the observance 

of a natural phenomenon such as changes in 

temperature. In public health practice, 

process control is very useful in showing 

variation that exists in health outcomes or 

performance between groups or institutions. 

Process control is often a starting point for 

needs assessment, for getting services and 

epidemiological understanding (Flower, 

2009). Generally, the main goal of process 

control is to detect the changes in the 

process occurring at an unknown period of 

time as soon as possible after it has occurred 
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and simultaneously controlling the rate of 

false alarms (Dong et al. 2008).  

Control charts are statistically and visually 

designed to detect changes or shifts in 

process. A process that is operating at or 

around some set values and only under some 

random variation (common causes) is said to 

be in an In-control (I.C) Process. On the 

other hand, process that somehow changes 

or shifts from in-control state is said to be 

out-of-control and usually denoted by OOC 

(Maravelakis, Panaretos & Psarakis, 2005). 

In SPC, it is essential to distinguish the 

variation due to real change of distribution 

(assignable or special cause) from that due 

to random error (chance or common cause). 

The procedure makes use of the control 

charts and this is necessary to establish 

whether there has been a significant change 

of any process distribution or not. Control 

charts, invariably are designed to serve this 

purpose by focusing on two strategies: 

(a.) To signal false alarm (false 

alarm occurs when a series 

signal while the process is in 

control), 

(b.) To signal as soon as possible 

when the process is Out-of-

Control (OOC). 

Having these two strategies in mind, the 

most popular technique for evaluating the 

performance of a control chart is the 

Average Run Length (ARL) which is based 

on the run length distribution (Maravelakis 

et al. 2005; Macracken & Chakraboti, 2013). 

Control charts as introduced by Walter 

Shewhart in 1924 are designed to detect 

changes or shift in a process through 

graphical display which allows a practitioner 

to determine whether a process is in control 

(IC) or out-of-control (OOC), this is done by 

taking samples at specified sampling 

interval and plotting the values of same 

statistics on a graphical interface which 

includes decision and threshold times 

usually called control limits (Jensen, Jones-

farmer, Champ, and Woodall, 2006). These 

charts are mostly designed to monitor 

individual variable say location (mean) or 

variability but not both; hence a concurrent 

use of two charts becomes certainly 

inevitable. In standard practice, this is done 

by pairs of control charts. For example, the 

Shewart X charts is used to control the 

process mean and standard deviation chart 

(Park 2014) and (Reynold and Stoumbos, 

2010). Using these paired charts (two charts) 

simultaneously provides a way to satisfy 

old-style of monitoring both the process 

means and variability at the same time. 

Despite the visible advantages of 

multivariate charts, single chart schemes 

have been established to be more attractive 

and preferable compared to the two-chart 

(combined charts) schemes due to the 

following reasons. Firstly, they are simple to 

apply by enabling practitioners to focus on 

single chart with a single variable, which 

makes the operation easier. Secondly, it is 

relatively easy to set the control limits for 

the chart based on the location (means) 

parameter and one for the variability 

(variance) parameter. Besides, they allow 

practitioners to avoid the inflated false alarm 

rate which results from simply using two 

independent control charts (McCracken & 

Chakaraboti 2013). 

1.1 Non-Parametric Change-Point 

Approach 

When the assumptions from a parametric 

model are not met or known, nonparametric 

approach becomes more appropriate 

(Edokpa & Salisu, 2016). In practice, it is 

rare to expect that the assumptions will be 

exactly met or in fact that such information 

will be available to the practitioner. In this, 

section, a brief description of the existing 

non-parametric change-point formulation 
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considered is firstly given. Thereafter, the 

suggested control chart and its design are 

considered. 

The change-point detection problem seeks to 

identify distributional changes at an 

unknown change-point k∗ in a stream of 

data. The estimated change-point should be 

consistent with the hypothesis that the data 

are initially drawn from pre-change 

distribution P0 but from post-change 

distribution P1 starting at the change-point. 

This problem appears in many important 

practical settings, including bio-surveillance, 

fault detection, finance, signal detection, and 

security systems. (Rachel, Sara,Yajun, Rui, 

& Zhang, 2018) 

1.2 Existing Non-Parametric-Based 

Change-Point Charts 

SPC tools are conventionally used in one or 

two setting that is the Phase I. This is where 

we have data set of fixed size, of which the 

prior purpose is to estimate the in-control 

properties of the process reading. The Phase 

II involves a steady stream of incoming 

reading but conventionally does not involve 

any further refinement of the estimate of the 

in-control process behaviour. (Douglas, 

Hawkins & Qiqi, 2010). 

To develop the non-parametric phase II 

methodology, it will be helpful to sketch the 

change-point formulation where you have a 

stationary data set, hence: assume X1, X2, X3, 

. . . . . ., Xr, Xr+1, Xn are independent 

continuous random variables with statistical 

distribution 

iX
~ F(x), for i=1,2, , r     1.0 

iX
~ F(x, Q), for i = r+1, 2, …, n 1.1 

The parameter Q represents a shift in 

location occurring after the change-point γ. 

But Q and γ are assumed unknown. Testing 

whether the process has shifted corresponds 

to the hypothesis test  

Ho: Q = 0 Vs Hi: Q ≠ 0  1.2 

or, equivalently, that the change-point γ lies 

outside the range 1 . . . . . n. 

1.3 Mann-Whitney (MW) Rank Test 

Suppose that 
 ,,..., 12111 1nyyy

and 

 ,,..., 22221 2nyyy
 are independent random 

samples from random variables Y1 and Y2 

respectively. Let the combined sample of n 

= n1+n2 observations be 

 ,.,..,,,.,..,, 2221212111 21 nn yyyyyyY 
. 

Then, arrange and assign rank (Ri) to the 

combined samples in ascending order of 

magnitude; where Ri is the rank of yi (for i = 

1,2, …,n). (Rotimi, Onoja & peter 2017) 

Considering the distributions of the samples 

according to (Mukherjee and Chakraborti 

2012) as: 

   2

22

2

11 ,;;,;  yFyF  1.3 

Where µ1, µ2 denote the location parameters, 

σ2>0 is the constant variability parameter 

and F(.) is a continuous distribution 

function. Under the null hypothesis that the 

two underlying populations have identical 

medians, the model (1.2) can be summarized 

in terms of a hypothesis as 

Ho: µ1 = µ2 vs  HI: µ1 ≠ µ21.4 

The Mann-Whitney rank test is thus 

expressed as: 

12

)1(21 


nnn

U
M

 ,          

where




1

1

1 2)1(
n

i

i nnRU

1.5 

The test statistic is in such a way that, 

depending on the null hypothesis, either a 

sufficiently small or a sufficiently large sum 

of ranks assigned to sample observations 

from population 1 causes Ho to be rejected. 

1.4 Wilcoxon-Mann-Whitney test-Statistic 

Suppose that 
   tkk YYandYY ,...,.,.., 11   

are independent random samples. We wish 

to test Ho: µ1 = µ2Vs HI: µ1 ≠ µ2  
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Let R1< R2< …..<Rk be the combined 

sample ranks of the first 

segment
 kYY .,..,1 observations in 

increasing order of magnitude. The 

Wilcoxon-Mann-Whitney rank test statistic 

for testing null hypothesis is defined as: 





k

i

iRW
1     1.6             

The mean and variance of the statistic W is 

given as: 

2

)1(
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and 12
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tktk
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 1.7 

The normalized statistic W is thus expressed 

as: 

12)1)((

2)1(
1









tktk

tkR
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k

i
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  1.8 

The p-values for the Wilcoxon-Mann-

Whitney test are based on the sampling 

distribution of the Run Sum statistic W when 

the null hypothesis (no difference in 

distributions) is true. Wilxocon-Mann-

Whitney is implemented in R function as 

“wilcox”. The process is thereafter 

considered to have shifted in location 

parameter given a lower p-value < α, pre-

specified level of significance. 

1.5 Mood test Statistic  

The mood statistic is used to test for a 

change in scale between two samples. Like 

the Wilcoxon-Mann-Whitney, the Mood test 

assesses the extent at which the ranks of the 

observations deviate from their expected 

value. 

Suppose 

that
   tkk YYandYY ,...,.,.., 11  are 

independent random samples. We wish to 

test  

Ho: σ1= σ11Vs HI: σ1 ≠ σ11  

Let R1< R2<…..<Rk be the combined sample 

ranks of the first 

segment
 kYY .,..,1 observations in 

increasing order of magnitude. Then the 

Mood test statistic for testing null hypothesis 

is defined as: 
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The mean and variance of the statistic M is 

given as: 

12

)1(
)(
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tk
ME

and

180

)4)(1)((
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ttktk
MVar

 2.0 

The normalized statistic M is thus expressed 

as: 

180

)4)(1)((

12/)1(

2

2






ttktk

tkM
MD

 2.1  

The null distribution of M is needed to 

obtain the critical values and the p-value. 

Mood is implemented in R function as 

“mood test”. The process is thereafter 

considered to have shifted given a lower p-

value < α, pre-specified level of 

significance. 

1.6 Wilcoxon-Mann-Whitney-Mood test 

Statistic  

The concepts of Wilcoxon-Mann-Whitney 

depend largely on independent random 

sample and it is based on the sampling 

distribution of the rank sum statistic W when 

the null hypothesis (no difference in 

distributions) is true.The process is 

thereafter considered to have shift in 

location parameter given a lower p-value < 

α, pre-specified level of significance. 

However, the mood statistic is used to test 

for a change in scale between two samples 

also;the Mood test assesses the extent at 

which the ranks of the observations deviate 

from their expected value. These are two 

nonparametric forms that can individually 

perform on the Mean and variance control 

charts. 

Now let there be another form of model 

where the two forms are put together called 



International Journal of Intellectual Discourse (IJID)   

ISSN: 2636-4832  Volume 4, Issue 1.   April, 2021 

 

47 

 

Lapage Rank test since both Wilcoxon-

Mann-Whitney and Mood statistics are 

based on ranks and nonparametric form 

1.7 Lepage-type Rank Test 

The nonparametric two-sample Lapage test 

was developed by (Lapage 1971). The test is 

designed to carrying out equality of the 

location and scale parameters test 

simultaneously against the alternative that at 

least for one of the parameters, the equality 

does not hold. Basically, it is a combination 

of the Wilcoxon-Mann-Whitney and the 

Ansari-Bradley statistics (Hutchinson, 2002; 

Rublik, 2005). That is, it converts both the 

Wilcoxon-Mann-Whitney and the Ansari-

Bradley statistics to square-standardized 

deviations from their respective expectations 

and adds the results. 

Perhaps the most widely used two-sample 

rank test of equality of location parameters 

is the Wilcoxon-Mann-Whitney test. The 

Ansari-Bradley test is also used in two-

sample rank test for equality of the scale 

parameters, though the ranking procedure is 

not that straightforward. However, the 

possibility of a two-sample test statistic 

which combines the Wilcoxon-Mann-

Whitney and the mood statistics (with 

ranking procedure more direct and 

straightforward) has been suggested in the 

literature (Rublik, 2009). The nonparametric 

two-sample Lepage test’s variant would be 

called Lapage-type test (for testing equality 

of the location and scale parameters against 

the alternative that at least for one of the 

parameters the equality does not hold) in the 

course of this study. Lepage-type test’s 

proposition is straightforward in concept and 

simple to carry out.  

Supposing that
 ,,..., 12111 1nyyy

and 

 ,,..., 22221 2nyyy
 are independent random 

samples from random variables Y1 and Y2 

respectively. Assume their distributions are 

given as follows: 

   2

22

2

11 ,;;,;  yFyF  2.2 

where µ1, µ2 denote the location parameters, 

σ1
2>0, σ2

2>0  are scale parameters and F(.) is 

a continuous distribution function. Let 

 nRRR ....,,, 21 , n = n1+n2, denote the rank 

of the pooled 

sample
 21212111 21

,..,,,..., nn yyyyy
 random 

variables. Under the assumption of no 

change, this model (2.2) can be summarized 

in terms of a joint hypothesis as: 

Ho: µ1 = µ2; σ1= σ2
2  2.3  

a)  HI: µ1 ≠ µ2   ;   σ1= σ2 (representing shift 

in process location only) 

b)  HI: µ1 = µ2   ;   σ1≠ σ2 (representing shift 

in process variability only) 

c)  HI: µ1 ≠ µ2   ;   σ1≠ σ2(representing shift 

in both process location and variability) 

1.8 Formulation of Lapage Rank Sum 

Type 

Let 
2

WT
 denote the square of the standard 

Wilcoxon-Mann-Whitney two-sample test 

statistic; 
2

MT the square of the standardized 

mood two-sample test statistic; and L the 

combination of the Wilcoxon-Mann-

Whitney and the Mood statistics, then 

Lapage-type test denoted by L is of the 

form: 
22

MW TTL      2.4 

where 
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SWand SM are the Wilcoxon-Mann-Whitney 

and the Mood rank test statistic respectively; 

and E(.) and Var(.) denote the corresponding 
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expected value and variance of SW and SM 

under Ho. Thus;   
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Hence, the Lapage-type statistic L of 

equation (2.4) could be expressed as: 
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2. The Proposed LCP Method 

We suggest a nonparametric Lapage-type 

Change Point (LCP) approach to Statistical 

Process Control (SPC) based on Lapage-

type test (which combines the Wilcoxon-

Mann -Whitney and the Mood statistics for 

shift in process Mean and variability, 

respectively). 

2.1 LCP Method Formulation  

Suppose that the independent process 

observations
 nyyy ,..,, 21 came from a 

continuous cumulative distribution 

function
 iiyF  ,;

, where µi and σi are the 

Mean and variability parameters 

respectively. Also, consider the existence of 

time τ (change-point) when there is a shift in 

mean and or in standard deviation of the 

process. The process reading, parallel 

Hawkins and Zamba (2005b), can be 

modelledas:  

iY
~ 











iifyN

iifyF

),,;(

),,;(

22

11

 2.7 

Under the assumption of no shift, this model 

(2.3) can be summarized in terms of the 

hypothesis in equation (2.7) in which 

location shift occurs if µ1 ≠ µ2 and 

variability shift occurs if σ1 ≠ σ2. If there is 

no enough evidence to reject the null 

hypothesis in equation (2.7), we will claim 

that the process is in state of ‘‘statistical 

control’’ (in-control, IC) and stable with 

“random causes” which cannot be removed 

easily from the process without fundamental 

changes in the process itself. On the other 

hand, if it shows enough evidence to reject 

the null hypothesis in equation (2.7), we will 

conclude that the control chart issues a 

signal and the process is out of “statistical 

control” (out-of-control, OOC) and 

undergoes an unusual variation due to 

“special causes”.  In principle, either or both 

of these shifts could occur. In addition to the 

τ (change-point) being an unknown 

parameter, µi (location parameter) and σi 

(variability parameter) are also unknown. 

Let the change-point τ = k and Ri be the rank 

of yi observations. And for the fact that the 

sample size keeps increasing in Phase II 

analysis as new observation comes in, we 

express the Lapage-type test statistic as: 

nkkn LL ,max, max
   2.8 

where 
2
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2.2 LCP Implementation Procedure  
When the sample size is not fixed but 

increase, the procedure for adapting the 

formulation in equation (2.7) for use in the 

Statistical Process Control (SPC), setting is 

described similar to Hawkins and Zamba, 

(2005b) and (Ross, Tasoulisand & Adams, 

2011) as follows: 

(a) Find nLmax, , after observation n has 

been added to the total record of the 

process, by  



International Journal of Intellectual Discourse (IJID)   

ISSN: 2636-4832  Volume 4, Issue 1.   April, 2021 

 

49 

 

i. Obtain the standardized 
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2)1(
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ii. Calculate the sum of squares of 

the standardized statistics, Lk,n 

iii. Determine the maximum of Lk,n 

over all the possible k, Lmax,,n = 

maxk|Lk,n| 

(b) If 
,max, nn hL 
where hn is some 

suitable control limit, then conclude 

that there is no evidence of a shift in 

either mean or variance, and leave 

the process running uninterrupted. 

(c) If however, Lmax,n>hn, then conclude 

that there is evidence of a shift in the 

mean, the variance or both.  

One of the main objectives of a control chart 

is to detect unusual variation as soon as 

possible, and at the same time keeping the 

probability of erroneous signal below a 

reasonable level, using the initial framework 

of Hawkins, Qiu, and Kang (2003), while 

the process is in-control, the sequence of 

control limits (hn) is chosen so that the 

conditional probability of a false alarm at 

each observation n given that there was no 

false alarm prior to n, is fixed at desirably 

selected constant level α. According to 

Dong, Hedayat and Sinha (2008), the type I 

error is usually characterized by the in-

control average run length (ARLo) to a false 

alarm. That is, ARLo = 
.

1

 likening Hawkins 

and Zamba (2005b), this can be written in 

symbols as 

  
   njhLhLP jjnn ;max,max,     3.0 

Theoretically, similar to the literature (such 

as Hawkins and Zamba, (2005a ,2005b); 

Zhou, Zou, Zhangand Wang (2009), Zamba 

and Hawkins (2006) submissions, it does not 

seem possible to solve for these hn values. 

So, a simulation through the use of R “cpm” 

package Ross, (2013) is used to estimate 

them. 

3. Application of the Methods to Children 

Suffering from Bronchial Pneumonia 

There is no doubt that the challenges posed 

by bronchial pneumonia affect the entire 

population, but children are most vulnerable 

because of their unique physiologic, 

anatomic, morphologic and socio-economic 

characteristics (W.H.O, 2015). In the same 

vein, the Millennium Development Goals 

(MDGs) advance increased international 

attention focusing on child bronchial 

pneumonia in the developing world, with 

major aim to reduce under-five child 

mortality (Annim, Awusabo-Asare & Amo-

Adjei, 2013). This assertion is characterized 

by the Nigeria situation particularly in the 

Savannah and Rain forest region of the 

country. The report by the World Health 

Organisation, 2016 resolved that National 

Development for Health Services (NDHS) 

in Hyper, Hypo and Meso-endemic area in 

Africa are charged with the responsibility of 

collecting data on the bronchial pneumonia 

of children. NDHS measure the weight of all 

children under age 5 (60 months) in selected 

households in Nigeria. The scope of the data 

used in the computation was based on the 

reported cases of bronchial pneumonia as 

obtained from the records section of Irrua 

Specialist Hospital. 

 Given the report and statistical submissions 

of the hospital in 2016, out of 30,050 

children under age 5 in the 2016 routine 

health surveillance services on children 

about 17,345 were diagnosed with bronchial 

pneumonia representing 57.7% valid cases. 
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There are indications that the bronchial 

pneumonia status of children in Nigeria has 

gradually increased over the last decade. 

The extent of bronchial pneumonia has 

worsened informing recent decay in health 

care services.  This submission is true as a 

result of climate change, humanitarian crisis, 

and socio-political instability being 

experienced in Nigeria. This is most 

common among children of the poor and 

average class accounting for 55-75% of the 

Nigeria population Centre for Disease 

Control (CDC) (2017). The proportion of 

children who suffered bronchial pneumonia 

increased from 11% in 2003 to 14% in 2008 

and 18% in 2013 and the trend seems 

continuous particularly in the south-south 

region. Against this backdrop, the 

motivation to monitor the bronchial 

pneumonia status of children less than age 5 

as measured by acute bronchial pneumonia 

using statistical quality control scheme 

becomes imperative. 

4.Data Application and Methods 

Centre for Disease Control (CDC) report in 

2016 is adopted as spring board for change 

point control scheme in the study. The study 

considered the existing medical records on 

the report cases of children who suffered 

from the bronchial pneumonia disease in 

Irrua Specialist Hospital. 

In addition, children with z-scores below 

minus two standard deviations from the 

reference population median are considered 

thin (bronchial pneumonia) or acutely 

pneumonia.  

The performances of conventional change-

point charts rely on the normality 

assumption of process distribution. 

However, sometimes, the distribution of 

process is not only skewed, but also heavy-

tailed. In order to monitor bronchial 

pneumonia of age under-five children, its 

distribution is presented and assessed by a 

histogram (see figure 1), below the most 

commonly used Shapiro-Wilk Normality 

Test. 

Figure 1.A histogram of acute bronchial 

pneumonia of fewer than 5 children 

Histogram of acute bronchial pneumonia Histogram of Wasting

Wasting (%)

fre
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0
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Acute bronchial pneumonia (%) 

Result 

The Graph depicts that the data set 

distribution does not follow a normal 

distribution. Corroborating this, Shapiro-

Wilk Normality test statistic: W= 0.9268 

(p=0.001463) confirms that there is 

sufficient evidence to conclude that the data 

set has not been drawn from a normal 

population. 

4.1 Application of proposed LCP-based 

Chart 

The figures 2a and 2b below respectively 

shows LCP nonparametric-based control 

chart applied to acute bronchial 

pneumoniaof under 5years children. 

LCP nonparametric-based chart on acute 

bronchial pneumonia of under-5years 

children 

Figure. 2a 

LCP Control Chart
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LCP estimated change-point, along with its 

detection time of acute of bronchial 

pneumonia of under-5years children. 

 

Figure. 2b 

Change-Point Estimate
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Results 

Figures 2a and 2b shows the results of 

applying nonparametric-based LCP control 

chart to the data. The chart does not only 

detect the shift in location but also the shift 

in variability. The estimated change-point, 

along with the period at which the 

maximised test statistic (Lmax) exceeds the 

control limit, is shown in figure b. The chart 

signals a shift in children’sbronchial 

pneumonia, as measured by acute 

pneumonia, at about two years old (24th 

month), while it suggests that the actual 

change had started at the 21st month 

(observation). This is an indication of the 

LCP promptness in raising alarm of a 

process shift if indeed it exists. 

After-Signal Diagnosis  
A shift signal by LCP is an indication of 

either shift in mean, in variance or in both. 

Hence, it is important for after-signal 

diagnosis to be carried out on the pre- and 

post-shift data segments.  

Table 1 Summary Statistics of Pre-shift and 

Post-shift Segments of bronchial pneumonia 

 

 

Result  

The summary statistics in Table 1 confirm 

that the signal may have resulted in both a 

mean shift (p=0.002949) and a variability 

shift (p=0.03978) of children’s bronchial 

pneumoniaas measured.  

4.2 Discussion of Result 

 

The inappropriateness of GLR control chart 

application to non-normal data is 

demonstrated with the use of Irrua Specialist 

Hospital data as applied to under-5 children 

bronchial pneumoniastatus, as measured by 

acutepneumonia diagnosis. The result is said 

to be unrealistic as the actual 

commencement of process monitoring was 

at 20th month. And indeed, this corroborated 

the stance of Hawkins and Zamba (2005b) 

claim that their proposed chart may not be 

suitable for non-normal data. Similarly, 

application of nonparametric-based MW 

chart to the data performed poorly. This 

could be attributed to the fact that there exist 

joint location and variability shifts in the 

process data. In agreement with literature 

such as Hawkins and Deng, (2009) and 

Zhang et al. (2010), MW could not in any 

way perform better compared with one-chart 

method designed to simultaneously monitor 

location and variability shifts in process 

quality. However, results from the LCP 

nonparametric-based chart substantiated 

NPC and ICT (2014) findings which 

reported that majority (83%) of children less 

than 6 months old were not exclusively 

monitored, and that over 90% of children 

 Pre-

Shift 

(Seg 1) 

Post-

Shift 

(Seg2) 

2-sample 

(p-value) 

Mean 25.07201 17.33677 W = 76 

(0.002949) 

St.dev 4.747507 0.910598 Z = -2.056 

(0.03978) 
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age 6-23 months were monitored 

inappropriately (based on recommended 

infant and young child monitoring 

practices). Bearing this in mind, application 

of LCP gave a clear pointer to the policy 

maker the need to urgently address the 

failure of children less than 2 years old to 

receive adequate monitoring. And, if the 

necessary corrective measures were taken to 

address this challenge, the tendency of 

wasting would be reduced to a large extent. 

5. Conclusion 

In conclusion, there is a clear indication that 

LCP performs quite better compared with 

the competing control charts. Traditional 

control charts have immensely contributed 

in the area of providing quality product and 

services, however, they lack the required 

ability to adequately and completely 

eradicate losses arising from let detection of 

faults due to false alarm and the period of 

such alarm.  

6. Recommendation 

The study suggests that the new method 

should be used in short-run situations, as in 

child bronchial pneumonia study, where the 

underlying distributions are usually 

unknown. We also recommend the method 

for both medical and manufacturers due to 

its high level of reliability since it has the 

ability of reducing the rate of false alarm.  

7. References 

Annim, S. K., Awusabo-Asare, K. and Amo-

Adjei, J. (2013). Household 

nucleation, dependency and child 

health outcomes in Ghana. DHS 

Working Papers No. 98, retrieved 

from 

http://www.dhsprogram.com/publica

tions/publication-wp98-working-

papers.cfm. 

Chakraborti, S and van de Wiel, M. A. 

(2008). A nonparametric control 

chart based on the Mann-Whitney 

statistic. Institute of Mathematical 

Statistics, Vol. 1, pp.156–172. 

Chakraborti, S. and Eryilmaz, S. (2007).A 

nonparametric Shewhart-type 

signed-rank control chart based on 

runs.Communications in Statistics – 

Simulation and Computation,Vol. 

36, No.2, pp.335-356. 

Chakraborti, S., van der Laan, P. And Bakir, 

S. T. (2001). Nonparametric control 

charts: an overview and some results. 

Journal of Quality Technology, Vol. 

33, No. 3, pp.304 – 315. 

Chatterjee, S. and Qiu, P. (2009) 

Distribution-free Cumulative Sum 

Control Charts using Boostrap-based 

control limits. The Annals of Applied 

Statistics, Vol. 3, pp 349-369. 

Dong, Y., Hedayat, A. S. and Sinha, B. K. 

(2008). Surveillance strategies for 

detecting changepoint in incidence 

rate based on Exponentially 

Weighted Moving Average Methods. 

Journal of the American Statistical 

Association, Vol. 103, No. 482, 

pp.843- 853. 

Dougles, M., Hawkins, M. and Qiqi, D. 

(2010). A nonparametric Change-

point Control Chart. Journal of 

Quality Technology Vol. 142, No.2, 

Pp. 165 – 173. 

Dougla, M.H. and Zamba, K.D. (2008). 

Statistical process control for shift in 

mean or variance using a change 

point Formulation. America Society 

for Quality Control, Technometrics 

Vol.47, No.2, Pp. 164 – 173  

Edokpa, I. W.andSalisu, S. U. (2016) On the 

optimal Average Run length of the 

Multivariate Exponentially Weighted 

Moving Average Control Chart for 

Equally Correlated Variables. 

International Conference Held at 

Temmmuz-Aralik, Turkey, 



International Journal of Intellectual Discourse (IJID)   

ISSN: 2636-4832  Volume 4, Issue 1.   April, 2021 

 

53 

 

YeniTurkiye, BilimveTeknolojiÖzel 

sayisi-111 pp 20-27 

Flowers, J. (2009). Statistical process 

control methods in public health 

intelligence. Technical Briefing 2, 

Association of Public Health 

Observatories [APHO], retrieved 

from http://www.apho.org.uk. 

Hawkins, D. M. and Deng, Q. (2009).A 

nonparametric change-point control 

chart.Journal of Quality 

Technology,Vol. 42, No. 2, pp.165 -

173. 

Hawkins, D. M. and Zamba, K. D. 

(2005a).A change-point model for a 

shift in variance.Journal of Quality 

Technology, Vol. 37, No. 1,pp.21-31. 

Hawkins, D. M. and Zamba, K. D. 

(2005b).Statistical process control 

for shifts in mean or variance using a 

change-point 

formulation.Technometrics, Vol. 47, 

No. 2, pp.164-173. 

Hawkins, D. M., Qiu, P. and Kang, C. W. 

(2003).The changepoint model for 

statistical process control.Journal of 

Quality Technology, Vol. 35, No. 4, 

pp.355-366. 

Jensen, W., Jones-Farmer, L. A., Champ, C. 

W. and Woodall, W. H. (2006). 

Effects of parameter estimation on 

control chart properties. Journal of 

Quality Technology, Vol. 38, No. 4, 

pp.349-364. 

Hutchinson P. T. (2002). Technical Note: 

Should we routinely test for 

simultaneous location and scale 

changes? Ergonomics, Vol. 45, No. 

3, pp.248-251. 

Lapage, Y. (1971). A combination of 

Wilcoxon’s and Ansari-Bradley’s 

statistics.Biometrica, Vol. 58, No. 1, 

pp.213–217. 

Maravelakis, P.E., Panaretos, J. and 

Psarakis, S. (2005). An examination 

of the robustness to nonnormality of 

the EWMA control charts of the 

dispersion. Communications in 

Statistics –Simulation and 

Computation, Vol. 34, No. 4, 

pp.1069–1079. 

McCracken, A. K. and Chakraborti, S. 

(2013). Control chart for joint 

monitoring of mean and variance: an 

overview. Quality Technology and 

Quantitative Management, Vol. 10, 

No. 1, pp.17-36. 

Mukherjee, A. and Chakraborti, S. (2012). A 

nonparametric phase II control chart 

for simultaneous monitoring of 

location and scale.Quality and 

Reliability Engineering 

International, Vol. 28, No. 3, 

pp.335-352. 

Reynolds, M.R. Jr. and Stoumbos, Z.G. 

(2010).Robustness to non-Normality 

of the CUSUM Control Charts for 

Monitoring the Process and Mean 

and Variance Matrix.Journal of 

Quality and Reliability Engineering 

International Vol.26, No.5, Pp.453 – 

473. 

Ross, G. J. (2013). Parametric and 

nonparametric sequential change 

detection in r: The cpm package. 

Retrieved from URL: 

http://gordonjross.co.uk/ 

Rachel C., Sara K., Yajun M., Rui, Tand  W. 

Zhang  (2018)Differentially 

PrivateChange-Point Detection. 

Proceedings of the 32nd 

International Conference on Neural 

Information Processing Systems 

(2018) Pages 10848-

10857arXiv:1808.10056 [math.ST] 

Ross, G.J., Tasoulis, D.K. and Adams, N.M. 

(2011). Nonparametric monitoring of 

http://gordonjross.co.uk/
https://arxiv.org/abs/1808.10056


International Journal of Intellectual Discourse (IJID)   

ISSN: 2636-4832  Volume 4, Issue 1.   April, 2021 

 

54 

 

data streams for changes in location 

and scale. Technometrics, Vol. 53, 

No.4, pp.379-389. 

Rublik, F. (2005).The multisample version 

of the Lepagetest.Kybernetika, Vol. 

41, No. 6, pp.713–733. 

Rublik, F. (2009). Critical values for testing 

location-scale hypothesis. 

Measurement Science Review, Vol. 

9, No. 1, pp. 9–15. 

Zamba, K. D. and Hawkins, D. M. (2006).A 

multivariate change-point model for 

statisticalprocesscontrol.Technometri

cs, Vol. 48, No. 4, pp.539–549. 

Zhou, C., Zou, C., Zhang, Y., and Wang, Z. 

(2009). Nonparametric control chart 

based on change-point model. 

Statistical papers, Vol. 50, No. 1, 

pp.13-28. 

 


